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It is noteworthy that even for polynomials the Hermite-Birkhoff (HE)
interpolation problem, whereby at anyone point the values of scattered
derivatives may be specified, remains open in the sense that there is no
condition which is both necessary and sufficient for poisedness, i.e .. the
existence of a unique solution when the points of interpolation are chosen
arbitrarily except for their order. Denoting the degree of the interpolating
polynomial p(x) by 11, there is on the one hand the necessary Polya condition
according to which the total number of interpolation requirements on the
lth and higher derivatives cannot exceed 11 + 1 - 1, the number of free
parameters of pUI(X). On the other hand, the question of the strongest
possible sufficient condition ensuring poisedness was considered by a number
of authors: Atkinson and Sharma [I], Ferguson [2J, Karlin and Karon [4],
and Lore?:1tz [6], following Schoenberg's seminal paper [13} (for a recent
review see Sharma [15] or Lorentz [7]). The following sufficient conditiOl: is
at present the strongest known: the polynomial HB interpolation problem
is poised if the Polya conditions hold and if the interpolation requirements
at anyone point, when not of Hermite type, eicher involve an even Dumber
of successive derivatives or, failing that, are "unsupported:·

The main result of this work is to show that the same condition is sufficient
to ensure that the HB spline interpolation problem is poised, provided that
the knots of the spline and the interpolation points interlace properly. The
interlacing has to be such that in any subinterval the total number of inter­
polation requirements on the lth and higher derivatives of the spline s(x)

does not exceed the number of free parameters determining SUI/X) in that
subinterval. We also include in our treatment the possibility, new even in the
context of polynomials, that the spline is required to fulfill certain mixed
boundary conditions, involving linear combinations of the derivatives at
both end points, In both of these questions we follo\';: the lead of KarEn
and Karon [4].

We want to emphasize that, in the sufficient condition for HB spline
interpolation, the placement of the knots and points is arbitrary except for
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the necessary interlacing condition, in contrast to, e.g., Schoenberg [14],
Meir and Sharma [10], where the interpolation points coincide with the knots.
Therefore apart from their independent interest our results are of importance
in ascertaining the unicity of best approximation by monotone splines, as
indicated by the work of Lorentz and Zeller [9].

The method of proof we use here is an extension of the one used in an
earlier article [12] to prove the uniqueness of Hermite interpolation. It is
based on a sharpened version of the Budan-Fourier theorem as obtained
in [11]. Since this approach is somewhat different from the one customarily
employed we illustrate its use by deriving in Section 1 the largely known
results on polynomial HB interpolation. Since the method carries over
virtually unchanged to splines we are free to concentrate on the features
peculiar to splines when turning to the derivation of the necessary conditions,
Section 2, and the sufficient condition, Section 3, for the poisedness of the
HB spline interpolation problem.

1. POLYNOMIAL HB INTERPOLATION WITH MIXED BOUNDARY CONDITIONS

Let there be given M points in (a, b), a < Xl < X 2 < ... < Xu < b, the
set I of 11 + 1 - r ordered pairs (i,j) 1 :"( i :"( AI, 0 :"(j :"( 11 and the data
f,), (i, j) E I. Consider the interpolation problem

(i,1) E I (1.1)

for polynomials of degree 11 satisfying the r independent boundary conditions

n

L [aijpt;)(a) + bijp<n-j)(b)] = u"
j~O

i = 1,... , r. (1.2)

The question is under what conditions on the set I and the boundary form
C = II II au 11;~l.;~o , I: bi; 11~~l.~~O Ii it will be possible to find a unique solution
for any selection of points, arbitrary except for their order. When this is the
case the problem will be called poised. Since the poisedness of the interpola­
tion problem may, and will be, ascertained by determining when the homo­
geneous problem has only the trivial solution, it will be convenient to approach
it, following Schoenberg [13], via the .!vI >< (11 + 1) incidence matrix E = [I eij II
where

eo = 1,

=0,

(i, j) E I,

otherwise.
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We will say that p(x) interpolates (X, E, C) if p(;)(x,) = 0 whenever e;j = I
and if it satisfies the homogeneous boundary conditions (1.2). Denote

I 1'4

M 1 = I I elj,
j=O i=l

(1.3)

i.e, 1\1[ is the total number of interpolation requirements up to and including
the ith derivative. Denote further

(1.4;

The fundamental necessary condition for poisedness, the Polya condition.
then reads here as follows, cr., Ferguson [2).

THEOREM 1.1. Let M n + r = n + 1. Then the above problem is poised
only (f

M 1 + p(l) ?: I + 1, 1= 0, ... , n.

As usual, e.g., Atkinson and Sharma [I}, Ferguson [2), when for some i
equality occurs in (1.5) the interpolation problem can be decomposed into
two problems of lower degree. In order to state this result assume for
simplicity that C is arranged so that for all I

aii = 0, p(l) + 1 :S; i ~ r, 0 ~ j ~ I

and

bij = 0, p(l) + 1 :S; i ~ t, 11 - I :S;j ~ n.

Denote

corresponding to the boundary conditions

n-l-l

I [ai,i+l+1p(j}(a) + bup(n-l-l-j)(b)] = 0,
j=O

i = p(i) --i- 1,.. " r. (1.5)

THEOREM 1.2. Let (E, C) describe an HB polynomial interpolation problem
of degree 11 and suppose that for some v, °:S; v :S; 11 - 1, I'Il,. -;- p, = v + 1.
Then the first v + 1 columns of E constitute a (ll + I)-incidence matrix £1 ;
the last n - II columns of E constitute a (n - v)-incidence matrix E2 ; and the
interpolation problem (E, C) is poised if and only if both of the interpolation
problems (E1 , C1(v) and (£2' C2(v» are poised.

Example 1.1. Consider the incidence matrix Ii ~g~g Ii with boundary
conditions p(O) = p(l) and p(3)(l) = ~p(4)(l). Here 1111 + p(1) = 2 hence
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the problem is decomposable and poised if and only if the problem II 10 II,
together with a boundary condition of either p(O) = p(l) or p(l) = -p'(I),
is poised. Though this problem is clearly poised we would not be able to
deduce so directly from Theorem 1.3 because there is a "supported odd
block" and the boundary form is not SC2 •

The proofs of the previous theorems can be found in [2], when allowance
is made for the inclusion of the boundary conditions. The importance of
Theorem 1.2 lies in the fact that it enlarges the class of interpolation problems
for which poisedness can be demonstrated, there being no condition which is
both necessary and sufficient for poisedness. Only when the data at the
interior points are Hermite and the boundary conditions satisfy a sign­
consistency condition, Postulate T, is there a necessary and sufficient condition,
namely the Polya condition, see [11].

In proving poisedness under more general criteria, our method will be
to assume to the contrary that there exists a nontrivial polynomial p(x)
interpolating (X, E, C), and then to show that a contradiction ensues when
its degree is taken to be exactly m: m ~ n, because the interpolation con­
ditions imply the occurence of too many "zeros." The latter lower bound for
for the number of zeros will follow from a sharpened version of the Budan­
Fourier theorem, which we proceed to state. Given p(x), a polynomial of
degree n, define

where S+(ai)~' denotes the maximum number of sign changes in the ordered
sequence am, am+! ,... , an when each zero is replaced by +1 or - 1. Let
Yi, i = 1'00" N, be all the distinct points in (a, b) (in their natural order) at
which any of the derivatives of p(x) vanishes, and denote

N

Y(p(m); (a, b)) = I y(p(m); J'i)'
i=l

We then have the following crucial identity, see [11].

PROPOSITION 1.1. Let the polynomial p(x) be of degree n exactly. Then

This sharpened version of the Budan-Fourier theorem is an easy consequence
of the fact that

S+((_1)i p(i)(YJ)~ + S+(p(i)(YH1))~

= lim [S+(( -IY pW()'j + E))~ + S+(pW(YHl - E))~] = n.
EJ,O
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COROLLARY 1.1. Let the polynomial p(x) be of degree n exactly. Then fOi'
nt ~n

Y( p; (a, b» + !}fl? [S+« _1)' p(i)(a + E»~" + S'(p(i\b - E»~'}

= Y(pUn); (a, b» + m. (1.9)

The corollary may be viewed as an extension of Rolle's theorem because
Y(p,mJ; (a, b» = Z(pln,,; (a, b» + 2hm, Z(p(Tli); (a, b» denoting the total
number ofzeros ofp(mJ in (a, b) andh", an integer with ho ?o h1 ?o ... ?o 11,,=0.
The importance of the identities (1.8), (1.9) lies in the following properties
of the Y-function, which show that it is analogous to, but stronger than, the
number of zeros at a point.

a. yep; x) ?: o. (l.IO)

b. For a block of Hermite zero data of length I at x, pUlex) = 0,
i = 0, ... , t- 1,

yep; x) ?: t. (1.11)

c. For an even block of zero data of length 2m, p(i)(x) = 0, i = j, ... ,
j -;- 2m - 1,

yep; x) ?: 2m. (1.12)

d. For an odd block of zero data of length 2.'11 + 1, pUlex) = 0,
i =j, ... ,j + 2m

Y(p; x) ?: 2m + 2S' (p(j-ll(x), _pu+2m+1)(x». (1.13)

Furthermore the end point terms in (1.8) and (1.9) are intimately tied up
with the requirements on the boundary form. In order to state these in a
form applicable also to splines with a total of k knots, assume the number k
to be given and form

and

Note that for polynomials k = O.

POSTULATE 1. The matrix II AI'. n+l(k), B,..n+l I; is sign-consistent of order
r(SCr ) and has rank r (a matrix U is said to be SCi" if all r x r nonzero 311b­

determinants of U have the same sign).

The connection between this requirement and (1.8), (1.9) is provided
by the following property, a proof of which can be found in [12J.
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PROPOSITION 1.2. Let the r X (n + 1) matrix II A',.,n+1(k), B,..n+1 II be of
rank r, 1':'( 2(n + 1), and SCI" If II A'r,I+1(k), B",I+1II, 0:'( I :'( n, is of
rank p(/) then either p(l) = 2(1 + 1) or else S+(vi)i(l+I) > r for every vector

vT = (VI '00" V2([+1» satisfying IIC -ly-O(IlA',·.I+1(k), B,.,I+111 V = O.

In order to illustrate the use of this proposition consider a polynomial of
exact degree I, I :'( n, which satisfies the homogenous boundary conditions
(1.2), the boundary form conforming to Postulate I with k = O. Then
Proposition 1.2 shows that

where € = (_1)"-0(1)+11-1. Note that if 1= n then the right-hand side becomes
r, and that the last term is completely missing when the boundary conditions
are separated.

We come now to the statement of the strongest sufficient condition ensuring
poisedness. For its description we need the following concept, cf., [8J.

DEFINITION 1.1. A sequence of consecutive 1's in row i of E, eij =

eij+1 = ... = eu+! = 1, such that eii-l = 0 is called a supported block if
there are prescriptions on derivatives of strictly lower order than the jth
in both

(i) an earlier row of E or in Ar ,"'+1 (i.e., rank .iIr,; ;;:: 1),

(ii) a later row of E or in B r .",+! (i.e., rank Br ,; ;;:: 1).

A sequence of consecutive l's constitutes an odd (even) block if it begins in
column 1 or later and contains an odd (even) number of l's. In this con­
nection note properties (1.12), (1.13). An instance of a supported odd block
was given in Example 1.1.

THEOREM 1.3. Let the boundary form C fulfill Postulate I with k = 0
and assume that the incidence matrix E satisfies the Polya condition (1.5).
If E does not contain supported odd blocks then the polynomial interpolation
problem (E, C) is poised.

Proof Suppose to begin with that E contains no odd blocks at all. Assume
contrary to the assertion of the theorem that p(x), a polynomial of degree I
exactly, interpolates (X, E, C). Then by (1.10)-(1.12) yep; (a, b» ;;:: MI'
Hence using (1.15) and substituting in (1.8) yields the bound

This clearly contradicts the Polya condition (1.5) when the latter involves
strict inequality, M 1 + p(l) > I + 1. A contradiction is also reached when
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kII T pU) = 1 --L 1 because of the following consideration. p(x) Demg a
polynomial of degree I, E cannot contain a prescription on the lth derivative
and consequently the prescriptions on derivatives higher than the lth can
come only in even blocks, i.e., 11 + I - r - M z must be even. Thus
r - p(l} -'-./1 - 1 is even and S~(Ep(l)(a), p(l)(b» = O. Note that this added
consideration is superfluous when the boundary conditions are separated.

Consider now the case that E does contain unsupported odd blocks,
in the rows corresponding to the points Yl ,... , ;'''-1 , )',,+1 , .... )'"" with
(Y"-1 , )'1'-.1) containing all the Hermite data though (Yi ' Yi+1) may contain
even blocks. Suppose that the highest odd block at )'i , i ~ fL, starts at Vi,
hence VI? J!2 ~ ••• ;;:: V,,-l > 0 < V,,+1 ~ ., ..~ v",. Assume again that
there exists a nontrivial polynomial interpolating lX, E, C). We will preser,tiy
prove the following lemma, which says that an unsupported odd block
contribmes its length either to the Y-function or to the number of sign
changes at the boundaries, and, moreover, the latter do not overlap the
sign-changes contributed by the boundary conditions.

LEl\lMA 1.1. If p(x) is ofdegree I, max(v1 • Vii.) ,,;; 1~ 11, thell

With this lemma in hand we may proceed as before, since the assumption
of the odd blocks being unsupported implies in particular that the matrix

I . _l)n-, Ilr [ I' b .]1" n-J'm],I I( ali ;i=l,.i=~'l" ij ,i=1. ;=YI-l I

Hence, e.g., when 1 = 11,

Similarly, if the degree of p(x) is taken to be 1 with V2 ,~ 1 ,s:; VI and V/H ·S 1,
then according to (1.16)

while rank [I au 11;:"='l.i=O = 0 (the odd block starting at J/i is unsupported)
and therefore S+(p(i)(b»;'m ? p(/).

Proof of Lemma 1.1. For simplicity take the degree of P(x) to be n.
Consider the interval (J'H' y;), j ~ f.1. ~ 1. Since the odd block at }'j,

starting at Vj is unsupported, all the interpolation conditions at points in
Ch-l , yJ, whose total number we denote "~fn(Yj_1 ' yJ, must come in even
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blocks starting at least as high as Vi' Hence by (LlO), (1.12) Y(plVj);
(YH ,Yi)) ;;:: Mn(}'H , y;). By Corollary Ll it follows now that

yep; (YH ,Y;)) + l~m- [S+« _1)1 /'\.Vi-1 + E))~l + S+(p(i)(Yi - E))~)] - Vj

;;:: M n(Y;-l ,y;). (Ll7)

Moreover Y(p(Vj); )';) equals at least the number of conditions at Y; on the
v;th and higher derivatives of p, since as far as p(Vj) is concerned the odd
block at Y; starting at V; constitutes Hermite data while higher blocks are
even. Observing that lim£w S+« -l)ip\il(Yi + E)X~+l counts the remaining
conditions at Yf , we get

= Yi(p(,,). ".) + limS+«-l)i p(;)(l'. + E))V, :> M (1.'·)
, J J ",.10 J J 11 j+l ~ n.,)· (Ll8)

Upon adding the inequalities (Ll7) for j = I, 1+ 1 and (Ll8) for j = lone
obtains

yep; (YH , )'1+1)) + l~m- [s+« _l)lp(i)( )'1-1+E))'d+S+(p(i\YI+1- E))ri+1]-Vl+1

;;:: M n ( Yl-1 ,YI+1)'

Hence by induction, choosing )'" arbitrarily in ()'''-1 , )',,+1),

yep; (a, y,,)) + Ijm- S+« _l)i p(;)(a + E))~l ? M n(a, J,,)

and similarly,

yep; (y" , b)) + IjRl S+(pw(b - E))~m ;;:: MII(y" , b)

from which the lemma is easily deducible.

2. NECESSARY CONDITIONS FOR HB INTERPOLATION BY SPLINES

We consider interpolation by splines of degree n with the set of k knots
8 = {g;}~ , a < ~1 ::s;; ~2 ::s;; .. , ::s;; ~" < b, satisfying the boundary conditions
(1.2). R coincidences of successive Cs are permitted, R ::s;; n + 1, indicating
a knot of multiplicity R at that point, i.e., the spline is of continuity class
Cn - R in the neighborhood of r Equivalently, we will sometimes denote the
knots in E by 7]1, i = 1,... , L, 7]1 < 7]2 < ... < 7]L where the knot 7)1 has
multiplicity R; and L~~l R; = k.

We denote by Xl = {x;IlK\ N 1 = 11 + 1 + k - r - M 1- 1 the ordered set
of points at which there are interpolation requirements on the Ith and higher
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derivatives of the spline, with the understanding that when there are m such
interpolation conditions at the same point then that point is included m times
in the set. Since we are dealing with splines, the interpolation conditions on
the spline t(x) at a knot 7]; may take three forms: a condition on t U)(7];-\

for j ~ n + I - R;, on t U )(7];) for j ~ n - R[ , or on tU)('lj;+) for j ~ 11 +
] - R i • In this case 7];-,7], and 7],+ are separately included in precisely thai:
order, each as many times as is appropriate. The only limitation imposed is
that there be no conditions on t(n+l-Ri)(7]i-) and t(/,-c-l-Rd(7],+) at the same
time. for that would reduce the multiplicity of the knot by one, as far as the
homogenous problem is concerned.

These additional interpolation possibilities complicate the notion of the
incidence matrix for at a knot Yji the corresponding row of E splits into two
rows at} = n + 1 - R;, the upper (lower) one containing the interpolation
conditions on 'Y}i-('Y}i+)' Consequently some caution is also needed in the
definition ofan even or odd block at Yji: for example when there are conditions
on t\j)(7];), j = i, ..., n - R i , and t(i)(Yji-), j = n + 1 - Rl , ... , 111 - 1, then
together they form an even or odd block depending on whether m - I is
even or odd. Thus for example the following incidence matrix corresponding
to the points Xl' Yj, X z , for a spline of degree 3 with a double knot at 71,
contains no odd blocks,

o
~ ~II
o 011·
o 011

We will see that this interpolation problem is in fact poised.
Our exploration of the spline HB interpolation problem follows the

path of the polynomial case. We start off therefore with the analogue of the
Polya condition. Let 8 l (i) stand for the knots of a spline t(x), interpolating
(X, E, C, S) when til-t-l)(X) = 0; the number of knots in 8rC/) is k l =
2:~1 max(R! + 1- n, 0). Then, with the notation of Theorem 1.1, the
Polya condition reads as follows.

THEOREM 2.1. Let fl-1n + r = n + 1 + k. Then the spline interpolation
problem eX, E, C,8) can be poised oniy if

M 1 + p(!) ~ i + 1 + k 1 , 1= 0, ... , n - 1. (2.1)

The proof of this theorem is a transcription to splines of the proof of
Theorem I" I, and is therefore omitted. The same is true for the proof of the
following decomposition result, corresponding to Theorem 1.2. Denote by
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8 2(/) the complement of 8 1(/) with respect to 8, 8 2(1) contains a total of
L~1 min(n - I, RJ knots.

THEOREM 2.2. Let (X, E, C,8) describe a HB interpolation problem for
splines of degree n, and suppose that for some v, 0 ~ v < n, Mv + p(v) =
v + 1 + k" . Then the first v + 1 columns ofE constitute a (v + I)-incidence
matrix, E1 ; the last n - v columns constitute a (n - v)-incidence matrix
E2 ; and (X, E, C,8) is poised if and on(v if both (X, E1 , C, (v), 8 1 (v))
and (X, E2 , C2(v), 8 2(v)) are poised.

As usual with spline interpolation, the knots of the spline and the inter­
polation points must interlace properly for poisedness to be possible. For
the knots and points must be distributed so that the total number ofconditions
from a given derivative and up in any subinterval does not exceed the number
of parameters that determine that derivative in the subinterval. fn order to
formulate this condition more precisely we need a few notations. Denote by
K(TJ" , 1]v) = L:~~~+1 Ri the number of fs in 8 interior to the interval (TJv , TJ')
and by NI[TJ" , TJv] the number of points of Xl in [TJ" , 1]v], i.e., the number of
requirements on the Ith and higher derivatives at points in [TJ" , TJ,,], including
possible points TJ,,+, TJ" , TJv , T}v- (but excluding '(},,-, 1]v+). Further, adopting
the convention (1.6), denote r*(I + 1) = r - p(/), rank II ali 11~~Pllj~l,~l+l =
p*(1 + 1) and rank II bij 1I:'~PllI+l,~'::~-1 = q*(I + 1).

THEOREM 2.3. The spline interpolation problem (X, E, C, E) can be poised
only if the following set of conditions, the interlacing conditions, holds for alii,
o ~ I ~ n.

1. Nz(a, TJ,,] + r*(I) - q*(/) ~ n + 1 - I + K(a, TJJ,for all 1]" .

2. Nih", b) + r*(I) - p*(l) ~ n + 1 - 1+ K(TJ" , b),for all n" .

3. NI[TJ", 1]vl ~ n + 1 - 1+ K(TJ" , TJJ,for all 1],. < 1]v .

4. Nl(a, TJ,.] + N I[1]v, b) + r*(/) ~ 2(n + 1 - I) + K(a, TJJ +
K(TJv , b),for all TJ" < TJ,' .

Proof. Denote by KI(1],. , 1]J the number of knots of t(l)(x) in the interior
of (TJ" , TJv), i.e., each knot TJ of t(x) of multiplicity R being counted only
min(n + 1 - I, R) times. We want to demonstrate first that the above set of
conditions is equivalent to the seemingly stronger set of conditions obtained
by replacing K(a, TJ,,), K(1],. , TJJ, K(1]" , b) by Kz(a, TJ,.), KtCYJ" , 'fI,,), K,(1],. , b).
Let us show for example that condition 3 implies N I[TJ,1, TJvl ~ 1l + 1 ­
1+ KI(TJ" , 1]v). This is certainly the case if (1]", TJv) contains only knots of
multiplicity at most 11 + 1 - I. Assuming the assertion to be true by induction
when (TJ" , TJv) contains m knots of multiplicity greater than 11 -"- 1 - I, we
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prove it when there are m + 1 such. knots, T/ being one of them. Then

and

Thus by the induction hypothesis

N/(1)" , 1)'] ~ 11 + 1 - 1+ K/(-ry" , 1)

+ n + 1 - I + Klr;, 1],,) = 11 ..L 1 - I + K,i'YJ". , '17,.).

Using these stronger conditions to prove necessity assume by contradiction
that (X, E, C, 8) is poised but that e.g., for some I and fL,

Consider the problem of determining a spline with the knots 1/i which is of
degree 1- 1 in (a, 1)J, of degree n in (1)" , b) and which interpolates (X, E,
C, E). Only n + I + k - I" - NI(a, 1)J interpolation conditions need to be
fulfilled, because the Nla,1)J conditions on the lth and higher derivatives
in (a, '7"J are automatically satisfied. For the same reason the number of
boundary conditions is reduced to pei - 1) + q*(I),

i-1 n

'\' a . .f{ ;'('a) + '\' b· .fIn-j)(b) = 0
'-' !.I L /..1 ,

;=1 J=O

n-l

I bijt,n-j)(b) = 0,
i=O

i = 1,.... p(! - J),

i = p(! - I) ..L L.,., t,

there being only q*(l) independent equations among the last I" -- p(l - 1J.
On the other hand, the number of parameters needed to determine the
spline is I-+- k - K(a, 1),,), which by assumption exceeds the total number
of conditions to be fulfilled, n + 1 + k - Nla. 1),J - 1"*(1) + q*(l). Hence
a nontrivial spline fulfilling these requirements may be found, contradicting
the poisedness of (X, E, C,8).

Whenever one the interlacing conditions, say 1, involves equality for
some I and YJ" , the interpolation problem (X, E, C, 8) may be decomposed
into two separate interpolation problems (X, El , Cl , 8 1) and (X, E2 , C2 , 8~)

the former being poised ifand only if the latter two are poised. (X, E1> Cl , SlY
is the interpolation problem with the nontrivial conditions that remain of
(X, E, C, 8) when the spline is required to be of degree 1- 1 in (a, YJ,J and
of degree 11 elsewhere; (X, E2 , C2 ,82) is an interpolation problem in (a, r;,,)
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for splines ofdegree 11 - I with the knots YJi of multiplicity mineR;, 11 + 1 - I),
i = 1,... , fL - 1, satisfying those interpolation conditions of £2(n + 1 - I)
which lie in (a, YJ,..), as well as from among the last r*(I) boundary conditions
those r*(I) - q*(I) involving only the end point a. The analysis in this case
is similar to the one used when equality occurs in the Polya conditions. The
precise statement of this decomposition result, however, is quite lengthy and
cumbersome. Since it will not be used in subsequent developments, serving
only to enlarge the class of poised interpolation problems, we dispense with
a more complete elaboration. For the case I = 0 consult Karlin and Karon [4].

Often it is convenient to have a set of explicit inequalities between the
sets {xill}fl and {fi}i , instead of the previous interlacing conditions. The
following theorem provides such a criterion. Denote

k(l) = N l + r*(I) - (n + 1 - I)

= 1+ k - M 1- 1 - p(l- 1), 1= 0, ... , n, (M_1 = pC-I) = 0)

and assume the Polya condition holds so that k(l) ~ k. Note that the inter­
lacing conditions are empty if k(l) ~ O.

THEOREM 2.4. The interlacing conditions hold for a given I, with
o < k(l) ~ k, if and only if there exists a subset of3, 3 1 = {f;l}i(l), and an
integer A, r*(I) - q*(l) ~ A ~ p*(l), such that

i = 1, ... , k(!) (2.2)

wherever it makes sense; with the added exception that equality is permitted

(i) at the left hand if X;_A = fil
(ii) at the right hand if Xi+n+1-H = fi~ •

Proof. It is easily verified that (2.2) implies the interlacing condition for
that I. We base our proof of the converse on the observation that in case
k(l) = k the theorem has been proven in [12]. The proof may therefore be
completed by induction once it is established that whenever k(l) < k it is
possible to delete a knot from the set 3, yielding a set 3', in such a fashion
that the interlacing conditions remain valid for 3'.

Let k(l) < k. By the method of [12] it can be shown that there exists
an integer fL, r*(l) - q*(l) ~ fL ~ p*(l), such that Xi~/l+7.(l)-k < f·i <
xj~n+l-l-/l' i = 1,... , k, (we will disregard the exceptions i, ii for their
inclusion would not change the considerations, only make them more
cumbersome). Recapitulating the main points in arriving at this conclusion,
conditions 1 and 2 imply that certainly xi~P'(l)+k(l)-k< f, < Xi~n+l-H'(l)H'(l)'
Thus either x,~; < ~l , in which case we can simply take fL = r*(I) - q*(I),
or there exists a least integer v, v ~ p*(l), such that Xi~v+k(lH; < fi ,
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I = I, ... , k. v being least implies the existence of an index 11' for which
I;il ~ x;~~"+l+kll)-k and on this basis conditions 3 and 4 show t1:at for the
same v g; < X;~n+1-1-" . Taking fL then to be the largest integer v, 0 ,<,:;' p*(l),
for which X;~"+k(l)-k < 1;; < X}~"+1-1-V it follows that 1"*(1) - q*(/) ,~~ 0 or
a contradiction with condition I would ensue.

Let h be the least index such that I;h ,,:; x),~1' ; if there is no such index \ve
have finished for then the last knot may be deleted. It follows that for i < II,

x;~1' < t, and 1;; < Xi+n +1- 1-" ; for i > h, X;~1'+7ql)_I: < ti and, by condition 3,
1;; < -'i,"-l-,,· Deleting gh to obtain 8', it is necessary to check that the
interlacing conditions hold for 5' only on intervals containing the knot 1;,', .
Take for example I;i < l;i+1 ,,:; !;h ,,:; I;j-1 < f, and denote by K'(!;, . L) =

j - i - 2 the number of knots of 5' in (f;, gJ. Since x;~" < f, and
~j < .Y.L~!1I-1-1L ' Nl[ti, ~J < j - i-I + 11 - I proving l\rl[~i ~ ~JJ ,.
11 + I - 1+ K(I;;. O. Similarly NM" b) ,,:; N 1 - i + 110 whence

,V1[!;; , b) ~ 1"*(1) - p*(l)

~ 11 + I - r--;- K'(I;;, b) - (k - k(f) - I) - (p*U) - 0)

proving condition 2, since k(l) < k and fL ~ p*Ul. Checking the remaining
conditions is equally simple.

EXAMPLE 2.1. In order to illustrate the use of this theorem let us see what
restrictions it imposes in the following example discussed by Karlin and
Karon [15]. Consider the interpolation probiem(without boundary conditions)
corresponding to the incidence matrix

E=

1 000
o ! I 0
o I I 0
I 000

at the points 0, Xl' X 2 , L for a spline fix) of degree 3 with the knots
o < ~l ~ t2 < 1. Here Xo = {O, Xl , Xl , X 2 , .12 , I} and k(O) =~, Xl =

'~X1' Xl' .12 , X 2) and k(l) = 1, while k(2) = 0, k(3) = -l. Thus the
condition for I = 0 requires that 0 < 1;1 < X 2 and '\'1< g2 < L the conditio:1
for r = 1 that either Xl < !;l < X 2 or Xl < t2 < .12 , where equality is
permitted, e.g., at the left if the interpolation conditions at Xl are taken as
conditions on t'tXl ) , t"(x1-). In summary, the interlacing conditions require
at least one knot to be in [Xl' x 2]. In the next section it 'Nill be shown that
this condition is also sufficient for uniqueness.
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3. SUFFICIENT CONDITIONS FOR UNIQUE HB INTERPOLATION BY SPLINES

THEOREM 3.1. Let there be given the (n + I)-incidence matrix E cor­
responding to the points X = {X,}~l , the knots B = {gi}~ and the boundary
form C which satisfies Postulate I. Assume that the Polya condition (2.1)
and the interlacing conditions hold. If E contains no supported odd blocks then
the spline interpolation problem (X, E, C, B) is poised.

This section is devoted to proving the above theorem. Since a complete
proof would be rather lengthy and abound in technical details, we elaborate
it only in the case where all the knots are simple. This case is common enough
to be of interest by itself yet many technicalities which arise in the general
situation do not appear. Some pointers to treating the general case, are
contained in an earlier version of this paper, which is available on request.

In order to keep the presentation self-contained we recall from [10] the
definitions of the Y-function for a spline t(x) of degree n, with only simple
knots. Assume t(x) ~ 0 everywhere.

a. At a point x different from a knot and such that t('>l(x) =F 0 the
polynomial definition (1. 7) is adopted.

b. At a knot gj such that t("l(gj-)t(ll)(gj+) =F 0 define

W(t; 0 = S+( _t(nl(gj-), t(n-lI(gj), t(I>l(gj+» ~ 1,

Y(t(z); gj) = I-V(t; gj) + S+(t(;\gn)~ + S+« _I)' t(;\g/»~ - (n - I).
(3.1)

c. Over an interval [gjl' gj) in which t(")(x) =0, with t(n)(g~)t(")(g~) "",0

Wet· [c. c.]) = S+(-t(n)(c-:) t(n-1)(C.) t(n)([+» - 1
~ 'SJr' SJz Sh ' SJr ' ."J2. '

(3.2)

(3.4)

d. Let 0; be the largest integer such that t(~l(a) =F o. If t("l(X) = 0 in
(a, gj) but t(n)(gj+) =F 0,

Wet; (a, gj]) = S+(t("\a), t(n)(g/), (3.3)

yeti!); (a, gj]) = Wet; (a, gj]) - g+-« _I)' t(;)(aM + S+« _1)1 /'\g/»)7.

e. Let (3 be the largest integer such that t(~'(b) =F o. If t(nl(x) = 0 in
(gj, b) but t(ll)(gj-) =F 0,

Wet; [gj, b)) = S+(t(n)(gj-), (-l)"-~ t(B)(b),

Y(t(!); [gj, b») = Wet; [gj, b)) + S+(t(i)(gj-M - S+(t(;)(b)~.
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f. Finally, define Y(t Ul ; (a, b» and W(t; (a, b» by summing over all the
appropriate expressions. For example if t(x) has two knots and the nth
derivative vanishes only in (g2 , b), then

y(t; (a, b) = yet; (a, gI» + Y(t; gI) + Y(t; (£=1 , ~2» + Y(t; [;2' b»),

W(t: (a, b» = W(t: gI) + W(t; [g2' b».

Here, e.g., yet; (a, gIl) is defined as for polynomials by summing yet; )';)
over all the zeros J'i of any of the derivatives of t.

Remark 3.1. It is to be noted that definition b is such that properties
(1.10)-(1.12) remain true at a knot. In particular, for an even block of zero
data of length 21 at a knot gj yet; gj) ~ 21. With these definitions in hand
one easily derives the following results, [12].

PROPOSITION 3.1. Let the spline t(x) be ofdegree n exactly (i.e., t1n)(x) ~ 0)
and suppose (hat t(x) =t= °everywhere. Then

Note in particular that simple estimates for W(t; (a, b» are available. For
example, if (Inl(x) does not vanish anywhere in (gl' g,J, then

W(t; (a, b» ~ k - S+(t1o<)(a), (-I)"+"-8t '6 )(b». (3.6)

COROLLARY 3.1. Under the conditions of Proposition 3.1, for I ~ In ,,; i7

yu(l); (a, b» + l~m- [S+«-l)i t(i)(a + E»;" -;- S~(t(i)(b - E»7'}

= Y(t im ); (a, b» + m - 1. (3.7)

Proof of Theorem 3.1. Assume by contradiction that the problem is not
poised, so that there exists a nontrivial spline t(x) of degree at most n inter­
polating (X, E, C, S), where S contains only simple knots. In the following
two lemmas it will be shown that I(x) cannot be of degree 11. Thus lex) is
actually a polynomial ofdegree at most n - 1 interpolating (X, £1 , CI(n-I),
£1 consisting of the first n columns of E. Since the latter problem satisfies the
conditions of Theorem 1.4 it follows that t(x) === 0, a contradiction.

LEMMA 3.1. Let E contain only Hermite data or even blocks. Then the
spline leX) interpolating (X, E, C, S) cannot be ofdegree n.

Proof. Supposing for the moment that t(x) =., 0 everywhere we show in
three representative situations that t(x) cannot be of degree 11, the gener2.1
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situation being a combination of these three cases. Since C conforms to
Postulate T, Proposition 1.1 implies that

Substitution in (3.5) yields that if t(x) is of degree 11 then

Y(t;(a, b)) + r ::( n + Wet; (a, b)) + S+(tl~l(a), (-ly+n-~tlB)(b)). (3.8)

Our aim is to arrive at a contradiction with this estimate.

1. If t1nl(X) never vanishes then in view of Remark 3.1 yet; (a, b)) ;?:

M n = 11 + 1 + k - r, contradicting (3.8) by virtue of (3.6).

2. Assume next that t(x) is of degree 1 in (til. , tll.+1) but of degree 11

everywhere else. Taking definition c of yet; [gil. ,t~+l]) and adding the
polynomial identity (1.8)

where Y1(t; .x) = S+(t(i)(i)~ + S+( -l)it(i)(i))~ - I, one obtains after a
rearranging of terms

yet; [tiL' tll.+l]) = Y!(t; [t~ , tll.+l]) + W(t; [t~ , tU+lD

+ s+(t(n)(tll.-), ( - 1)"-1-1 /ll(tll.)' ( - on-I t(n\C+l))

+ 11 - 1 - 2. (3.9)

Because of (1.10)-(1.12), Y1(t; [t~ ,tu+lD equals at least the number of
conditions in [til.' t~+l] on t and its derivatives up to order I, i.e.,
Y(t; [t~ , tU+1D ;?: No[tll. , tU+l] - N!+l[t~ ,tll.+l]' Interlacing condition 3
requires N Z+1[tll. , tll.+l] ::( 11 - I, yielding the estimate

yet; (a, b)) ;?: 11 + k - 1 - r + Wet; [til. , tu+l])

+ s+(t(nl(tu-), (_1)n-l t(n)(t;+l))'

On the other hand

whence

W(t; (a, tJ) + Wet; (t~+l ,b)) « k - 2 - s+(t1n)(a), (-I)k+n-! t\1')(b))

+ S+(t(n)(t~-), (_1)"'-1 t(n)(e+1))'
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Substituting the two expressions in (3.8) yields
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which is possible only if 11 - I is odd and the equality sign holds. In particular
there must be equality in the interlacing condition N1+I[t" , g,,+J = 11 ~ 1:
but then 11 - I must be even since the interpolation conditions contributing
to N1+l[g" , g"+l] have to come in even blocks.

3. Finally let us examine the case where t(x) is of degree I in (a, g:i.
I .:s;: 11 - 1, but of degree 11 everywhere else. Proceeding similarly to condition
2 while using definition d

Y(t; (a, gIl) = Y1(t; (a, tID ~ Nofa, gl] - N1+I(a, tJ

Nh-I(a, tI] .:s;: n - I - r + p(l) -L q*(l --;- 1).

Since rank II AI'.l+l , B r ,n+1 II ~ p(l) + q*(l + 1) it follows from Proposition
1. 1 that

S+« _l)i t(,-)(a»~ -L S+(t(i)(b»~+ S+(t(ll(a), Et(n)(b)) ~ p(l) --;- q*(l + 1)

where E = (_ly-p(l)+q·(1~IH-Il-1+k. Hence, with S~« _1) i t 1d(a»? = i1 - ;

yet; (a, b» + S+«(-1)' t(;)(a»g + S+(t(,-)(b»)~

~ 11 + k + 1 - S+(t(l)(a), Et(Il'(b».

Substituting this expression in (3.5) and using (3.6) ,'Ie get

which is possible only if 11 - 1- r*(l + I) + q*(l + 1) is odd and the
equality sign applies. Again it is seen that these two requirements cannot
be fulfilled at the same time.

In order to complete the proof of this lemma we have to dispose of the
possibility that t(x) == 0 in some subinterval, say (tlk-I , glk)' In that case
the interval may be contracted to a point, i.e., we consider tl(x) defined in
(a + Lt, b), .1 = tlk - glk-l , by tl(x) = t(x - .1) for x < g" and tl(x) = t(x)
for x > glk' In this process at most NO[tlk-I' glk] :'( n + 1 interpolation
conditions are lost, which are compensated for by the gain of the conditions
rij'(glk) = O,j = 0,... , 11 - 1, and the loss of a knot. An equivalent inter­
polation problem is therefore obtained, the only difference being that the
new number of knots no longer equals k and Postulate I may therefore not
be satisfied. The effect of this is that in the previous arguments a contradiction
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can seemingly be avoided; for example in case I the conclusion would be

1 :(; S+(t<nl(a), (-I)kt<nl(b)) - S+(t(nl(a), (-ly-I t<nl(b))

which would be possible if S+(t<nl(a), (-l)k-It<nl(b)) = O. The latter implies
W(tl; (a, b)) = k-l which is the maximum possible value for this expression
Hence ti">c.x) must change sign wherever possible and in particular S+(tinl(g"-),
ttl (g"+)) = 1. But then by definition Y(tl ; gJ = n + I rather than the
previously assumed n which makes again for a contradiction.

LEMMA 3.2. Suppose E contains no supported odd blocks. Then t(x)
cannot be of degree n.

Proof. We show how the arguments of Lemma 3.1, in each of its three
cases have to be modified when unsupported odd blocks are present. As for
polynomials we obtain in each of the three cases an analog of Lemma 1.1,
with the following change of notation. Consider the interpolation points at
which there are odd blocks of condition; let the point closest to gj from the
left (right) have its highest odd block starting at the derivative of order at
viv/) where for odd blocks to the left (right) of Hermite data viv/) but
not v/(Vj) may occur at gj' Define vo', Vk+l similarly with respect to a, b.

1. Lemma 1.1 remains valid for the spline t(x) when t(nl(x) =1= 0
everywhere ,i.e.,

yet; (a, b)) + l~m- [s+(( _1)i t{i)(a + €))~O' + S+(t{i\b - €))ci'+l] ? M n .

The proof also is exactly the same, when use is made of Corollary 3.1 instead
of Corollary 1.1. Thus a contradiction is obtained as in the previous lemma
because the assumption that the odd blocks are unsupported implies that the
matrix II II(-Iy+n-jaij 11;'=I';~V~' II btj 11~=I,j:~'+l II remains SeT and of rank r.

2. Suppose that t(x) is of degree I, I :(; n - 1, in (g" , g"H) but of degree
n everywhere else. For definiteness assume that V" ~ v,,' ? V"H ? V~+l and
that the Hermite data occur to the right of g"H .

(a) Let I ? v" . Then by the method of Lemma 1.1

yet; (a, g,,)) + lim S+(( _1)i t(i)(a + E))~O'
<to

? Mn(a, g,,) - lim S+(t(i)(g" - €))~" + V"
<.10

Y(t; [gil , g"HD
? Ml[t... , g,,+l] + lim [S+(t<il(t" - E))~" + S+(( _1)i t(i>Cg...H + E))~~+l] - V"

<to

yet· (g b)) + lim S+(t(iJ(b - E))"k+l
, t.t+l) e:J..O 0

? Mn(~"H , b) - lim S+((-I)i t(i)(~"H+ €))i+l.
EW



HERMITE-BIRKHOFF SPLINE INTERPOLATION

Thus by adding and using (3.9)

yet; (a, b» + Ijm [S+(( _1)i t(;)(a + E»~O + S+(t(i\b - E»~·c-1J

:)0 fl + k - 1 - r + r'V(t; [g'" , t"+l]) + S+(t(n)(t"-), t h )(C+l»

leading again to a contradiction, since, as in case 2 of the previous lemma,
NZ+l[g'," , g'''+l] has to be even (l ;;, v,,).

(b) Let v" > I ;;, V~+1 . The changes in the estimates of (a) are that
in the expression for yet; (a, t,,», lim.to S+(t(i)(t" - E»~IL = S+(t1i)(f,,»J +
v" - I - J + S+(t(l)(tIL)' (_l)n-l-lt1n)(fJ) while the estimate for
Yz(t; [t" , f."+1D is replaced by

Hence one obtains the estimate

YU; (a, b» + IjI~ [S+((_I)i t(i)(a + E»~O' + S+(t(;)(b -- E»~kc-l]

3 11 + k - r + Wet; [tIL' f"+l]) + s+(t(l)(tJ, ~t(n)(g~+l»

which suffices to establish a contradiction, in spite of the fact that
Ni+l[t" , tU+l] may be odd in this case.

(c) If V,,+1 > I there are the further changes in the estimates of (a)
in addition to those described under (b): Tn the expression for yet; (t"H , b»

11m s+«~ 1)' t W(f"+1 + €»~~+1

= s+((_l)i t(i)(f"+l»~+ V~+1 - I - I + S+(t(;)(f"+1)' -t(n)(t~c-l»

while the expression for yet; [f" , t"+1]) becomes

Thus using (3.9) without estimating N Z+1[g'" , {="+1J

However, since the conditions in [f" , t"+1J can start only at the derivative
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of order V~+l' or the odd block starting at V~+I would be supported, and
since I + 1 ~ v~+l it follows from the interlacing conditions that

Nl+I[g" , g"+ll = NV~+1[g" , g"+ll ~ 11 + 1- V~+I .

These two estimates combine to again give a contradiction.

3. Suppose that leX) is of degree I in (a, gl) and of degree 11 everywhere
else.

(a) Let I ?: VI' so that there may be conditions on derivatives of leX)
lower than I; let the highest odd block of such conditions at the point closest
to a start at V (i.e., V ~ vo'). We have then Y(t; (a, ~I]) = Ylt; (a, gl]) and

YzCt; (a, gIl) + l!li? S+« _1)1 t(i)(a + E»~

?: Mla, gIl + lim S+« _l)i tW(gl + E»~l'
<10

yet; (gl , b») + l}& S+(t(;)(b - E»)~kH

?: Mn(gl, b) - lim S+«_1)i t(;)(gl + E»)~r'.
<to

Hence

yet· (a. b» + lim [S+« _1); t(;)(a + E)Y + S+(t(;)(b - E)YkH]
,. <to 0 0

?: 11 + k + 1 - r - NZ+I(a, gIl.

From this point we may proceed as in 3 of the previous lemma up to the
point where it is seen that a contradiction can be avoided only if there is
equality in the interlacing condition NZ+l(a, tl] = 11 - 1- r + p(l) +
q*(l + 1) and in addition this quantity must be odd. Here N Z+1(a, gIl may
indeed be odd, since there may be odd blocks of conditions on derivatives
of order higher than I. However, since these odd blocks are unsupported it
must be that .4,..z+1 = O. Hence rank B,.,l+1 = p(l) and thus rank B",n+I =
q ?: pel) + q*(l + 1). Moreover, if t(x) satisfies the boundary conditions
it means in effect that L;~o bijt(n-j)(b) = 0 i = 1'00" r. Consequently
S+(t(i)(b»);m ?: p(l) + q*(l + 1) and hence

yet; (a, b) + s+« _1)i t(;)(a)~ + S+(t(i)(b»~ ?: 11 + k + 1

a contradiction to (3.5) and (3.6).

(b) If I < VI' then Mz(a, tl] = 0 from which N 1+1(a, gI] ~ 11 +
1 - VI' - r + P(VI') + q*(vl ' + 1). In the estimate of (a) for yet; (tl , b»,

l}& s+« _1); tW(tl + E»~l'

= S+« _1); t(i)(tI»~ + VI' - 1- S+(t(Z)(a), t(n)(tl+)'
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Note that the last term equals Wet; (a, gil). Using

Y(t; ta, gil> + S+«( _l)i tW(a»; = . S-'-((-l)i t(;)(gl»~

279

and the fact, explained in (a), that S+(t(il(b)~+l ~ p(F1') + q*(ii1' T 1) vie

get the estimate

which contradicts (3.5) and (3.6).
The proof of Theorem 3.1 for the case of simple knots is hereby completed.
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